
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4304 14

Client Hacked Server: Application Scenario for

Malicious Web Control

Ajit Prakash Alijad
1
, Pritam Vishnu Aher

2
, Sujata Ashok Chechare

3
, Vishal Eknath Ghume

4

BE Scholar, Department of Computer Engineering, S.R.E.S.‟s College of Engineering, Kopargaon, India1,2,34

Abstract: Client-Server model is the backbone of today‟s internet communication. In which normal user can not have

control over particular website or server. By using the same processing model one can have unauthorised access to

particular server. In this paper, we discussed about application scenario of hacking for simple website or server consist

of unauthorized way to access the server database. This application emerge to autonomously take direct access of

simple website or server and retrieve all essential information maintain by administrator. In this system, ip address of

server given as input to retrieve user-id and password of server. This leads to breaking administrative security of server

and acquires the control of server database. Where as virus helps to escape from server security by crashing the whole
server

Keywords: Hacking, Vulnerabilities, Dummy request, Virus, Server monitoring

I. INTRODUCTION

Hacking is an illegal and unauthorised activity in

today‟s world wide web communication. But this
unauthorised way can be used to improve security scenario

of the global communication network i.e. internet.

Different websites over the internet might having the

vulnerabilities in their security structure or some of the

websites used to carrying illegal work or contain some

confidential data.

In such a cases, this system plays an important role as it

will bring benefits for illegal data detection, checking

vulnerabilities present in websites, checking malicious

functions etc.

In client-server model communication, number of client

machines are ultimately connected to main server.

Client made request to the server and in response to

client‟s request server process it and return result back to

client. This approach can be useful to retrieve username

and password of the server.

This user-id and password helps to take control of

administrative panel of server machine which is
considered as an one of the security mechanism of the

server.

Once this administrative control taken successfully then

it is easy to change remaining security mechanisms and

access server as user wants.

 In this paper, we discussed about some technological

work towards achieving the way to access server in un-

authorized manner ultimately serving to cyber

applications.

II. SYSTEM USE CASES

This section provides more detail on some of the use

cases, covering the most important user requirements in
order to clarify user scenario on this system.

 All of these application s, have some common working

requirements. The security of the information and

trustworthy operation of these application s is of

paramount importance, as is the ability to manage over the

air.

A. Use Case 1: Cyber Forensics

Cyber forensics with working environment to detect or
to keep track of all activities on the internet. Which

requires to have direct access to particular web-site.

B. Use Case 2: Cyber Investigation

In order to find illegal work on internet cyber

investigation department requires direct access to server

database in unauthorised manner.

III. SYSTEM OVERVIEW

Fig. 1 delineats the fundamental architecture of

proposed system, consisting of server security levels
(proxy server, firewall), username-password program,

server monitoring, virus etc.

Processing in this system is typically done by high

speed wired/wireless network mechanism connects client

system, servers for services and applications.

In this paper, we focus on wired as well as wireless

connectivity, which allows flexibility to application.

The proposed architecture consist of username and
password retrieval, secure storage of data, main software

program, virus execution as main execution modules for

this application.

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4304 15

Fig.1. System Architecture

A. Username and Password Retrieval

This module provides username and password of main

processing server. Initially dummy request made to the

client to check whether server is live or not. If server

response is live then the system executes program which

retrieves certain information. Once the server information
retrieved then it will stored on client machine.

Fig.2. Initial Process Phase

This ultimately involves different hashing algorithm as

well as some of the decryption techniques.

1) LM-Hash Algorithm: Server administrator use a

strong password to file, system, drive etc. It may be 8 -

character or 16-character in length. It is difficult for

attackers to crack that file and hack the same. This
algorithm mainly focus on combination of string, numeric,

character etc.

Algorithmic Steps For LM-Hash-

Following are the execution steps for given algorithm.

i. Define methods for error reporting.

ii. Define program execution path.

iii. Configure HTTP request authentication.

iv. Set user to authorised user.

v. Use combination parts of all possible ones.

vi. Assign specific patterns of ones.

vii. Match possible combination of number and character.
viii. Save pattern match.

ix. Execute command path.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4304 16

B. Secure Storage Of Hacked Data

Once the data has been hacked from server then it is

necessary to store that data in secured way. This module

involves automatic storage of server data on client

machine.

C. Unauthorised Access To Server Database

Databases are most valuable data rest corporate data,

customer data, financial data etc. Databases have many

entry points i.e. web applications, internal networks,

partners network etc. If the OSs and networks are properly

secured databases still could be misconfigured, have weak

password, vulnerable to known/unknown vulnerabilities. If

the passwords are blank or not strong they can be easily

bruteforced[7]. Databases can be hacked from the internet.

Firewalls are completely bypassed. Basic NTLM

authentication schema –

Client → connects → Server
 Client ← sends challenge ← Server

 Client → sends response → Server

 Client ← authenticates ← Server

 Application objects are usually stored in an object-

oriented database. Sometimes, however, the customer

dictates a database platform; in that case the database is

usually relational. As also noted in [10], all object

databases have significally different programming

interfaces. Even if a standard exists [11], this standard is

somewhat incomplete, and every implementor fails to

support some parts of it. This means in practice that an
application written for a specific object database is not

portable to other databases. The situation is even worse if

a relational database is used, potentially requiring a major

rewrite of large parts of the application.

 This module used to take control of server by using

username and password retrieved by initial phase. It

mainly involves breaking of administrative security which

is in the form of secure authentication. Once the control of

the server taken successfully then client can easily access

server data as well as able to manipulate server data with

the help of this module.

1) Web Server Hacking: A Early web hacking

frequently meant exploiting vulnerabilities in web server

software and associated software packages, not the

application logic itself. In this paper, we discuss about

vulnerabilities associated with popular web server

platform software such as Microsoft IIS/ASP/ASP.NET,

LAMP(Linux/Apache/MySQL/PHP), BEA Web-Logic,

IBM Web-Sphere, J2EE, and so on. These types of

vulnerabilities are typically widely publicized and are easy

to detect and attack. Some of the most devastating Internet

worms have historically exploited these kinds of
vulnerabilities (for example, two of the most recognizable

Internet worms in history, Code Red and Nimda, both

exploited vulnerabilities in Microsoft‟s IIS web server

software). Although such vulnerabilities provided great

“Low Hanging Fruit” for hackers of all skill levels to

pluck for many years.

D. Monitoring Server Processes

It mainly views all actions takes place on the server as

server process analysis.

1) Session Hi-Jacking:

Fig.3. Process Of Session Hi-Jacking

It can be done at two levels Network Level and

Application Level. Network layer hijacking involves TCP

and UDP sessions, whereas Application level session

hijack occurs with HTTP sessions. Successful attack on

network level sessions will provide the attacker some

critical information which will than be used to attack

application level sessions, so most of the time they occur

together depending on the system that is attacked.

Network level attacks are most attractive to an attacker
because they do not have to be customized on web

application basis; they simply attack the data flow of the

protocol, which is common for all web applications.

 TCP hijacks are meant to intercept the already

established TCP sessions between any two

communicating parties and than pretending to be one of

them, finally redirecting the TCP

traffic to it by injecting spoofed IP packets so that your

commands are processed on behalf of the authenticated

host of the session[12]. It desynchronizes the session

between the actual communicating parties and by
intruding itself in between. As authentication is only

required at the time of establishing connection , an already

established connection can be easily stolen without going

through any sort of authentication or security measures

concerned. TCP session hijacks can be implemented in

two different ways: Middle Man Attack (suggested by

Lam, LeBlanc, and Smith) and the Blind attack.

 Since UDP does not use packet sequencing and

synchronizing; it is easier than TCP to hijack UDP

session. The hijacker has simply to forge a server reply to

a client UDP request before the server can respond. If

sniffing is used than it will be easier to control the traffic
generating from the side of the server and thus restricting

server‟s reply to the client in the first place.

E. Virus Execution

 A computer virus is a malware program that, when

executed, replicates by inserting copies of itself (possibly

modified) into other computer programs, data files, or the
boot sector of the hard drive; when this replication

succeeds, the affected areas are then said to be "infected".

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4304 17

When server security tries to block the client then virus

programme gets into action which performs SQL-Injection

attack and hold up system for two-hours as well as make

server system to be crash if needed.

1) SQL Injection Attack:

 SQL injection attacks pose a serious security threat to

Web applications: they allow attackers to obtain

unrestricted access to the databases underlying the

applications and to the potentially sensitive information

these databases contain. SQL injection refers to a class of

code-injection attacks in which data provided by the user
is included in an SQL query in such a way that part of the

user‟s input is treated as SQL code. By lever aging these

vulnerabilities, an attacker can submit SQL commands

directly to the database[13]. These attacks are a serious

threat to any Web application that receives input from

users and incorporates it into SQL queries to an underlying

database. Most Web applications used on the Internet or

within enterprise systems work this way and could

therefore be vulnerable to SQL injection.

1.1) Mechanism for Injection: Malicious SQL
statements can be introduced into a vulnerable application

using many different input mechanisms.

 Injection through user input: In this case, attackers

inject SQL commands by providing suitably crafted user

input. A Web application can read user input in several

ways based on the environment in which the application is

deployed. In most SQLIAs that target Web applications,

user input typically comes from form submissions that are

sent to the Web application via HTTP GET or POST

requests. Web applications are generally able to access the

user input contained in these requests as they would access

any other variable in the environment.
Second-order injection: In second-order injections,

attackers seed malicious inputs into a system or database

to indirectly trigger an SQLIA when that input is used at a

later time. The objective of this kind of attack differs

significantly from a regular (i.e., firstorder) injection

attack. Second-order injections are not trying to cause the

attack to occur when the malicious input initially reaches

the database. Instead, attackers rely on knowledge of

where the input will be subsequently used and craft their

attack so that it occurs during that usage.

 In the example, a user registers on a website using a
seeded user name, such as “admin‟ -- ”. The application

properly escapes the single quote in the input before

storing it in the database, preventing its potentially

malicious effect. At this point, the user modifies his or her

password, an operation that typically involves checking

that the user knows the current password and changing the

password if the check is

successful. To do this, the Web application might

construct an SQL command as follows:

queryString="UPDATE users SET password=‟" +

newPassword + "‟ WHERE userName=‟" + userName + "‟
AND password=‟" + oldPassword + "‟"

newPassword and oldPassword are the new and old

passwords, respectively, and userName is the name of the

user currently logged-in (i.e., „„admin‟--‟‟). Therefore, the

query string that is sent to the database is (assume that

newPassword and oldPas-sword are “newpwd”

and“oldpwd”):

UPDATE users SET password=‟newpwd‟

WHERE userName= ‟admin‟--‟ AND password=‟oldpwd‟
 Second-order injections can be especially difficult to

detect and prevent because the point of injection is

different from the point where the attack actually

manifests itself. A developer may properly escape, type-

check, and filter input that comes from the user and

assume it is safe. Later on, when that data is used in a

different context, or to build a different type of query, the

previously sanitized input may result in an injection attack.

1.2) Example Of SQL Injection Attack: Following

example illustrates application that contains SQL Injection
vulnerabilities.

1. String login, password, pin, query

2. login = getParameter("login");

3. password = getParameter("pass");

3. pin = getParameter("pin");

4. Connection conn.createConnection("MyDataBase");

5. query = "SELECT accounts FROM users WHERE

login=’" +

6. login + "’ AND pass=’" + password +

7. "’ AND pin=" + pin;

8. ResultSet result = conn.executeQuery(query);

9. if (result!=NULL)

10. displayAccounts(result);

11. else

12. displayAuthFailed();

 The above code implements the login functionality for an

application. It is based on similar implementations of login

functionality that we have found in existing Web-based
applications.

 The code in the example uses the input parameters login,

pass, and pin to dynamically build an SQL query and

submit it to a database.

For example, if a user submits login, password, and pin as

“doe,” “secret,” and “123,” the application dynamically

builds and submits the query:

SELECT accounts FROM users WHERE login=‟doe‟

AND pass=‟secret‟ AND pin=123. If the login, password,

and pin match the corresponding entry in the database,

doe‟s account information is returned and then displayed
by function displayAccounts(). If there is no match in the

database, function displayAuthFailed() displays an

appropriate error message.

F. Experimental Results

 After implementing different hacking as well as non-

hacking techniques, this system hacks simple web sites

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4304 18

with normal security credentials. It provides access to

server database and allow attacker to perform database

operations from client machine.

Fig.4. Experimental graph for the system

. Above Figure shows the experimental result of this

application upon different servers and provides

satisfactory results as required.

IV. CONCLUSIONS

 In this paper, we have presented a to view to hack the

server which include some hacking as well as non-hacking

methods. These algorithms and methods provides efficient

way to hack server database. By breaking the network

security allow to introduce new and better security

framework. The term “Hacking” not only consider for it‟s

illegal activities but also it should be use for strengthen

our global network.

ACKNOWLEDGMENT

We gratefully acknowledge H.O.D of computer

engineering department of our college for their kind

support for this project. We also thank our project guide

and co-guide for highlighting our path and their gracious
guidance. In last we like to thank all the friends who had

given some valuable contribution for this system.

REFERENCES

[1] NeisYangsou, XiaoouTang “Classi_cation of SQL injection attacks

counter measures" International conference

[2] Chan Liu “Hacking databases for owning your data" International

conference

[3] G. Antoniol and Y. Gueheneuc, “Malicious threats vulnerability in

instant messaging" volume 1.10

[4] A.Alexandrov ,P.Kmiec, and K. Schauser Consh “A confined

execution environment for internet computations"

[5] Karen Scarfone, Miles Tracy “Guide to general server security"

National Institute Of Sciense and echnology.In Proc.IEEE

Intl.Conf. on SQL,2011.

[6] Andrew Colin and Dr.Dobbs, “Oracle Application Server 10g

Security" April 2009.

[7] A. Marcus, “Hacking expose" volume 4.3.In Proc. Intl. Conf. on

pages487-499, 2009.

[8] A. Rohatgi, A. H. Lhadj and J. Rilling, “Storing User Passwords

Securely: hashing" volume 2.1.Journal, June 1996.

[9] Amichai Shulman, “Top Ten Database Security Threats", In Proc

Intl. Work-shop, pages 180-187, 1998.

[10] J. Wikman, “ Database Independence”. Nokia Research Center,February1996.

[11] E. G. G. Cattell (ed.) ODMG-93: “The Object Database Standard”.

 Morgan Kaufman, 1994.

[12] Shray Kapoor, “Session Hijacking exploiting TCP, UDP and HTTP Sessions”.

[13] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso, “A

 Classification of SQL Injection Attacks and Countermeasure”

0
0.5

1
1.5

2
2.5 Username &

Password
Retrieval

Database
Control

Virus
Execution

